Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Geospatial distributions reflect rates of evolution of features of language (1801.09637v1)

Published 29 Jan 2018 in physics.soc-ph, cond-mat.stat-mech, cs.CL, and nlin.AO

Abstract: Different structural features of human language change at different rates and thus exhibit different temporal stabilities. Existing methods of linguistic stability estimation depend upon the prior genealogical classification of the world's languages into language families; these methods result in unreliable stability estimates for features which are sensitive to horizontal transfer between families and whenever data are aggregated from families of divergent time depths. To overcome these problems, we describe a method of stability estimation without family classifications, based on mathematical modelling and the analysis of contemporary geospatial distributions of linguistic features. Regressing the estimates produced by our model against those of a genealogical method, we report broad agreement but also important differences. In particular, we show that our approach is not liable to some of the false positives and false negatives incurred by the genealogical method. Our results suggest that the historical evolution of a linguistic feature leaves a footprint in its global geospatial distribution, and that rates of evolution can be recovered from these distributions by treating language dynamics as a spatially extended stochastic process.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com