Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A BDF2-Approach for the Non-linear Fokker-Planck Equation (1801.09603v1)

Published 29 Jan 2018 in math.NA and math.AP

Abstract: We prove convergence of a variational formulation of the BDF2 method applied to the non-linear Fokker-Planck equation. Our approach is inspired by the JKO-method and exploits the differential structure of the underlying $L2$-Wasserstein space. The technique presented here extends and strengthens the results of our own recent work on the BDF2 method for general metric gradient flows in the special case of the non-linear Fokker-Planck equation: firstly, we do not require uniform semi-convexity of the augmented energy functional; secondly, we prove strong instead of merely weak convergence of the time-discrete approximations; thirdly, we directly prove without using the abstract theory of curves of maximal slope that the obtained limit curve is a weak solution of the non-linear Fokker-Planck equation.

Summary

We haven't generated a summary for this paper yet.