Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gelfand-Tsetlin Theory for Rational Galois Algebras (1801.09316v1)

Published 28 Jan 2018 in math.RT

Abstract: In the present paper we study Gelfand-Tsetlin modules defined in terms of BGG differential operators. The structure of these modules is described with the aid of the Postnikov-Stanley polynomials introduced in [PS09]. These polynomials are used to identify the action of the Gelfand-Tsetlin subalgebra on the BGG operators. We also provide explicit bases of the corresponding Gelfand-Tsetlin modules and prove a simplicity criterion for these modules. The results hold for modules defined over standard Galois orders of type $A$ - a large class of rings that include the universal enveloping algebra of $\mathfrak{gl} (n)$ and the finite $W$-algebras of type $A$.

Summary

We haven't generated a summary for this paper yet.