Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spectral gaps of frustration-free spin systems with boundary (1801.08915v2)

Published 26 Jan 2018 in quant-ph, cond-mat.stat-mech, math-ph, and math.MP

Abstract: In quantum many-body systems, the existence of a spectral gap above the ground state has far-reaching consequences. In this paper, we discuss "finite-size" criteria for having a spectral gap in frustration-free spin systems and their applications. We extend a criterion that was originally developed for periodic systems by Knabe and Gosset-Mozgunov to systems with a boundary. Our finite-size criterion says that if the spectral gaps at linear system size $n$ exceed an explicit threshold of order $n{-3/2}$, then the whole system is gapped. The criterion takes into account both "bulk gaps" and "edge gaps" of the finite system in a precise way. The $n{-3/2}$ scaling is robust: it holds in 1D and 2D systems, on arbitrary lattices and with arbitrary finite-range interactions. One application of our results is to give a rigorous foundation to the folklore that 2D frustration-free models cannot host chiral edge modes (whose finite-size spectral gap would scale like $n{-1}$).

Summary

We haven't generated a summary for this paper yet.