Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On bounded pitch inequalities for the min-knapsack polytope (1801.08850v1)

Published 26 Jan 2018 in cs.DS

Abstract: In the min-knapsack problem one aims at choosing a set of objects with minimum total cost and total profit above a given threshold. In this paper, we study a class of valid inequalities for min-knapsack known as bounded pitch inequalities, which generalize the well-known unweighted cover inequalities. While separating over pitch-1 inequalities is NP-hard, we show that approximate separation over the set of pitch-1 and pitch-2 inequalities can be done in polynomial time. We also investigate integrality gaps of linear relaxations for min-knapsack when these inequalities are added. Among other results, we show that, for any fixed $t$, the $t$-th CG closure of the natural linear relaxation has the unbounded integrality gap.

Citations (4)

Summary

We haven't generated a summary for this paper yet.