Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarial Classification on Social Networks (1801.08159v1)

Published 24 Jan 2018 in cs.MA and cs.SI

Abstract: The spread of unwanted or malicious content through social media has become a major challenge. Traditional examples of this include social network spam, but an important new concern is the propagation of fake news through social media. A common approach for mitigating this problem is by using standard statistical classification to distinguish malicious (e.g., fake news) instances from benign (e.g., actual news stories). However, such an approach ignores the fact that malicious instances propagate through the network, which is consequential both in quantifying consequences (e.g., fake news diffusing through the network), and capturing detection redundancy (bad content can be detected at different nodes). An additional concern is evasion attacks, whereby the generators of malicious instances modify the nature of these to escape detection. We model this problem as a Stackelberg game between the defender who is choosing parameters of the detection model, and an attacker, who is choosing both the node at which to initiate malicious spread, and the nature of malicious entities. We develop a novel bi-level programming approach for this problem, as well as a novel solution approach based on implicit function gradients, and experimentally demonstrate the advantage of our approach over alternatives which ignore network structure.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Sixie Yu (10 papers)
  2. Yevgeniy Vorobeychik (124 papers)
  3. Scott Alfeld (14 papers)
Citations (19)

Summary

We haven't generated a summary for this paper yet.