Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Impact of Batch Size on Stopping Active Learning for Text Classification (1801.07887v2)

Published 24 Jan 2018 in cs.LG, cs.CL, cs.IR, and stat.ML

Abstract: When using active learning, smaller batch sizes are typically more efficient from a learning efficiency perspective. However, in practice due to speed and human annotator considerations, the use of larger batch sizes is necessary. While past work has shown that larger batch sizes decrease learning efficiency from a learning curve perspective, it remains an open question how batch size impacts methods for stopping active learning. We find that large batch sizes degrade the performance of a leading stopping method over and above the degradation that results from reduced learning efficiency. We analyze this degradation and find that it can be mitigated by changing the window size parameter of how many past iterations of learning are taken into account when making the stopping decision. We find that when using larger batch sizes, stopping methods are more effective when smaller window sizes are used.

Citations (13)

Summary

We haven't generated a summary for this paper yet.