Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hybrid Gradient Boosting Trees and Neural Networks for Forecasting Operating Room Data (1801.07384v2)

Published 23 Jan 2018 in cs.LG, cs.AI, and stat.ML

Abstract: Time series data constitutes a distinct and growing problem in machine learning. As the corpus of time series data grows larger, deep models that simultaneously learn features and classify with these features can be intractable or suboptimal. In this paper, we present feature learning via long short term memory (LSTM) networks and prediction via gradient boosting trees (XGB). Focusing on the consequential setting of electronic health record data, we predict the occurrence of hypoxemia five minutes into the future based on past features. We make two observations: 1) long short term memory networks are effective at capturing long term dependencies based on a single feature and 2) gradient boosting trees are capable of tractably combining a large number of features including static features like height and weight. With these observations in mind, we generate features by performing "supervised" representation learning with LSTM networks. Augmenting the original XGB model with these features gives significantly better performance than either individual method.

Citations (8)

Summary

We haven't generated a summary for this paper yet.