Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pseudo-backstepping and its application to the control of Korteweg-de Vries equation from the right endpoint on a finite domain (1801.07206v4)

Published 22 Jan 2018 in math.OC and math.AP

Abstract: In this paper, we design Dirichlet-Neumann boundary feedback controllers for the Korteweg-de Vries (KdV) equation that act at the right endpoint of the domain. The length of the domain is allowed to be critical. Constructing backstepping controllers that act at the right endpoint of the domain is more challenging than its left endpoint counterpart. The standard application of the backstepping method fails, because corresponding kernel models become overdetermined. In order to deal with this difficulty, we introduce the pseudo-backstepping method, which uses a pseudo-kernel that satisfies all but one desirable boundary condition. Moreover, various norms of the pseudo-kernel can be controlled through a parameter in one of its boundary conditions. We prove that the boundary controllers constructed via this pseudo-kernel still exponentially stabilize the system with the cost of a low exponential rate of decay. We show that a single Dirichlet controller is sufficient for exponential stabilization with a slower rate of decay. We also consider a second order feedback law acting at the right Dirichlet boundary condition. We show that this approach works if the main equation includes only the third order term, while the same problem remains open if the main equation involves the first order and/or the nonlinear term(s). At the end of the paper, we give numerical simulations to illustrate the main result.

Summary

We haven't generated a summary for this paper yet.