Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

E-swish: Adjusting Activations to Different Network Depths (1801.07145v1)

Published 22 Jan 2018 in cs.CV, cs.LG, and stat.ML

Abstract: Activation functions have a notorious impact on neural networks on both training and testing the models against the desired problem. Currently, the most used activation function is the Rectified Linear Unit (ReLU). This paper introduces a new and novel activation function, closely related with the new activation $Swish = x * sigmoid(x)$ (Ramachandran et al., 2017) which generalizes it. We call the new activation $E-swish = \beta x * sigmoid(x)$. We show that E-swish outperforms many other well-known activations including both ReLU and Swish. For example, using E-swish provided 1.5% and 4.6% accuracy improvements on Cifar10 and Cifar100 respectively for the WRN 10-2 when compared to ReLU and 0.35% and 0.6% respectively when compared to Swish. The code to reproduce all our experiments can be found at https://github.com/EricAlcaide/E-swish

Citations (35)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com