Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Learning of Optimal Markov Network Topology with k-Tree Modeling (1801.06900v1)

Published 21 Jan 2018 in cs.DS and cs.AI

Abstract: The seminal work of Chow and Liu (1968) shows that approximation of a finite probabilistic system by Markov trees can achieve the minimum information loss with the topology of a maximum spanning tree. Our current paper generalizes the result to Markov networks of tree width $\leq k$, for every fixed $k\geq 2$. In particular, we prove that approximation of a finite probabilistic system with such Markov networks has the minimum information loss when the network topology is achieved with a maximum spanning $k$-tree. While constructing a maximum spanning $k$-tree is intractable for even $k=2$, we show that polynomial algorithms can be ensured by a sufficient condition accommodated by many meaningful applications. In particular, we prove an efficient algorithm for learning the optimal topology of higher order correlations among random variables that belong to an underlying linear structure.

Citations (25)

Summary

We haven't generated a summary for this paper yet.