Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dense Recurrent Neural Networks for Scene Labeling (1801.06831v1)

Published 21 Jan 2018 in cs.CV

Abstract: Recently recurrent neural networks (RNNs) have demonstrated the ability to improve scene labeling through capturing long-range dependencies among image units. In this paper, we propose dense RNNs for scene labeling by exploring various long-range semantic dependencies among image units. In comparison with existing RNN based approaches, our dense RNNs are able to capture richer contextual dependencies for each image unit via dense connections between each pair of image units, which significantly enhances their discriminative power. Besides, to select relevant and meanwhile restrain irrelevant dependencies for each unit from dense connections, we introduce an attention model into dense RNNs. The attention model enables automatically assigning more importance to helpful dependencies while less weight to unconcerned dependencies. Integrating with convolutional neural networks (CNNs), our method achieves state-of-the-art performances on the PASCAL Context, MIT ADE20K and SiftFlow benchmarks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Heng Fan (360 papers)
  2. Haibin Ling (142 papers)
Citations (13)

Summary

We haven't generated a summary for this paper yet.