Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mining Android App Usages for Generating Actionable GUI-based Execution Scenarios (1801.06271v1)

Published 19 Jan 2018 in cs.SE

Abstract: GUI-based models extracted from Android app execution traces, events, or source code can be extremely useful for challenging tasks such as the generation of scenarios or test cases. However, extracting effective models can be an expensive process. Moreover, existing approaches for automatically deriving GUI-based models are not able to generate scenarios that include events which were not observed in execution (nor event) traces. In this paper, we address these and other major challenges in our novel hybrid approach, coined as MonkeyLab. Our approach is based on the Record-Mine-Generate-Validate framework, which relies on recording app usages that yield execution (event) traces, mining those event traces and generating execution scenarios using statistical LLMing, static and dynamic analyses, and validating the resulting scenarios using an interactive execution of the app on a real device. The framework aims at mining models capable of generating feasible and fully replayable (i.e., actionable) scenarios reflecting either natural user behavior or uncommon usages (e.g., corner cases) for a given app. We evaluated MONKEYLAB in a case study involving several medium-to-large open-source Android apps. Our results demonstrate that MonkeyLab is able to mine GUI-based models that can be used to generate actionable execution scenarios for both natural and unnatural sequences of events on Google Nexus 7 tablets.

Citations (101)

Summary

We haven't generated a summary for this paper yet.