Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Atomic and Littlewood-Paley Characterizations of Anisotropic Mixed-Norm Hardy Spaces and Their Applications (1801.06251v2)

Published 18 Jan 2018 in math.CA and math.AP

Abstract: Let $\vec{a}:=(a_1,\ldots,a_n)\in[1,\infty)n$, $\vec{p}:=(p_1,\ldots,p_n)\in(0,\infty)n$ and $H_{\vec{a}}{\vec{p}}(\mathbb{R}n)$ be the anisotropic mixed-norm Hardy space associated with $\vec{a}$ defined via the non-tangential grand maximal function. In this article, via first establishing a Calder\'{o}n-Zygmund decomposition and a discrete Calder\'{o}n reproducing formula, the authors then characterize $H_{\vec{a}}{\vec{p}}(\mathbb{R}n)$, respectively, by means of atoms, the Lusin area function, the Littlewood-Paley $g$-function or $g_{\lambda}\ast$-function. The obtained Littlewood-Paley $g$-function characterization of $H_{\vec{a}}{\vec{p}}(\mathbb{R}n)$ coincidentally confirms a conjecture proposed by Hart et al. [Trans. Amer. Math. Soc. (2017), DOI: 10.1090/tran/7312]. Applying the aforementioned Calder\'{o}n-Zygmund decomposition as well as the atomic characterization of $H_{\vec{a}}{\vec{p}}(\mathbb{R}n)$, the authors establish a finite atomic characterization of $H_{\vec{a}}{\vec{p}}(\mathbb{R}n)$, which further induces a criterion on the boundedness of sublinear operators from $H_{\vec{a}}{\vec{p}}(\mathbb{R}n)$ into a quasi-Banach space. Then, applying this criterion, the authors obtain the boundedness of anisotropic Calder\'{o}n-Zygmund operators from $H_{\vec{a}}{\vec{p}}(\mathbb{R}n)$ to itself [or to $L{\vec{p}}(\mathbb{R}n)$]. The obtained atomic characterizations of $H_{\vec{a}}{\vec{p}}(\mathbb{R}n)$ and boundedness of anisotropic Calder\'{o}n-Zygmund operators on these Hardy-type spaces positively answer two questions mentioned by Cleanthous et al. in [J. Geom. Anal. 27 (2017), 2758-2787]. All these results are new even for the isotropic mixed-norm Hardy spaces on $\mathbb{R}n$.

Summary

We haven't generated a summary for this paper yet.