Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

NAE-SAT-based probabilistic membership filters (1801.06232v1)

Published 18 Jan 2018 in cs.DS, cond-mat.stat-mech, and cs.CR

Abstract: Probabilistic membership filters are a type of data structure designed to quickly verify whether an element of a large data set belongs to a subset of the data. While false negatives are not possible, false positives are. Therefore, the main goal of any good probabilistic membership filter is to have a small false-positive rate while being memory efficient and fast to query. Although Bloom filters are fast to construct, their memory efficiency is bounded by a strict theoretical upper bound. Weaver et al. introduced random satisfiability-based filters that significantly improved the efficiency of the probabilistic filters, however, at the cost of solving a complex random satisfiability (SAT) formula when constructing the filter. Here we present an improved SAT filter approach with a focus on reducing the filter building times, as well as query times. Our approach is based on using not-all-equal (NAE) SAT formulas to build the filters, solving these via a mapping to random SAT using traditionally-fast random SAT solvers, as well as bit packing and the reduction of the number of hash functions. Paired with fast hardware, NAE-SAT filters could result in enterprise-size applications.

Citations (3)

Summary

We haven't generated a summary for this paper yet.