Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Degree-constrained 2-partitions of graphs (1801.06216v1)

Published 18 Jan 2018 in cs.DS and math.CO

Abstract: A $(\delta\geq k_1,\delta\geq k_2)$-partition of a graph $G$ is a vertex-partition $(V_1,V_2)$ of $G$ satisfying that $\delta(G[V_i])\geq k_i$ for $i=1,2$. We determine, for all positive integers $k_1,k_2$, the complexity of deciding whether a given graph has a $(\delta\geq k_1,\delta\geq k_2)$-partition. We also address the problem of finding a function $g(k_1,k_2)$ such that the $(\delta\geq k_1,\delta\geq k_2)$-partition problem is ${\cal NP}$-complete for the class of graphs of minimum degree less than $g(k_1,k_2)$ and polynomial for all graphs with minimum degree at least $g(k_1,k_2)$. We prove that $g(1,k)=k$ for $k\ge 3$, that $g(2,2)=3$ and that $g(2,3)$, if it exists, has value 4 or 5.

Citations (6)

Summary

We haven't generated a summary for this paper yet.