Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quiver varieties and symmetric pairs (1801.06071v3)

Published 18 Jan 2018 in math.RT and math.SG

Abstract: We study fixed-point loci of Nakajima varieties under symplectomorphisms and their anti-symplectic cousins, which are compositions of a diagram automorphism, a reflection functor and a transpose defined by certain bilinear forms. These subvarieties provide a natural home for geometric representation theory of symmetric pairs. In particular, the cohomology of a Steinberg-type variety of the symplectic fixed-point subvarieties is conjecturally related to the universal enveloping algebra of the subalgebra in a symmetric pair. The latter symplectic subvarieties are further used to construct geometrically an action of a twisted Yangian on torus equivariant cohomology of Nakajima varieties. In type $A$ case, these subvarieties provide a quiver model for partial Springer resolutions of nilpotent Slodowy slices of classical groups and associated symmetric spaces, which leads to a rectangular symmetry and a refinement of Kraft-Procesi row/column removal reductions.

Summary

We haven't generated a summary for this paper yet.