Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Weighting for Exam Composition (1801.06043v1)

Published 24 Dec 2017 in cs.CY, cs.AI, cs.LG, and stat.ML

Abstract: A problem faced by many instructors is that of designing exams that accurately assess the abilities of the students. Typically these exams are prepared several days in advance, and generic question scores are used based on rough approximation of the question difficulty and length. For example, for a recent class taught by the author, there were 30 multiple choice questions worth 3 points, 15 true/false with explanation questions worth 4 points, and 5 analytical exercises worth 10 points. We describe a novel framework where algorithms from machine learning are used to modify the exam question weights in order to optimize the exam scores, using the overall class grade as a proxy for a student's true ability. We show that significant error reduction can be obtained by our approach over standard weighting schemes, and we make several new observations regarding the properties of the "good" and "bad" exam questions that can have impact on the design of improved future evaluation methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Sam Ganzfried (26 papers)
  2. Farzana Yusuf (3 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.