Papers
Topics
Authors
Recent
2000 character limit reached

On Krull-Gabriel dimension and Galois coverings

Published 18 Jan 2018 in math.RT | (1801.05979v2)

Abstract: Assume that $K$ is an algebraically closed field, $R$ a locally support-finite locally bounded $K$-category, $G$ a torsion-free admissible group of $K$-linear automorphisms of $R$ and $A=R/G$. We show that the Krull-Gabriel dimension $KG(R)$ of $R$ is finite if and only if the Krull-Gabriel dimension $KG(A)$ of $A$ is finite. In these cases $KG(R)=KG(A)$. We apply this result to determine the Krull-Gabriel dimension of standard selfinjective algebras of polynomial growth. Finally, we show that there are no super-decomposable pure-injective modules over standard selfinjective algebras of domestic type.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.