Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ranks and Symmetric Ranks of Cubic Surfaces (1801.05377v1)

Published 16 Jan 2018 in math.AG and math.AC

Abstract: We study cubic surfaces as symmetric tensors of format $4 \times 4 \times 4$. We consider the non-symmetric tensor rank and the symmetric Waring rank of cubic surfaces, and show that the two notions coincide over the complex numbers. The corresponding algebraic problem concerns border ranks. We show that the non-symmetric border rank coincides with the symmetric border rank for cubic surfaces. As part of our analysis, we obtain minimal ideal generators for the symmetric analogue to the secant variety from the salmon conjecture. We also give a test for symmetric rank given by the non-vanishing of certain discriminants. The results extend to order three tensors of all sizes, implying the equality of rank and symmetric rank when the symmetric rank is at most seven, and the equality of border rank and symmetric border rank when the symmetric border rank is at most five. We also study real ranks via the real substitution method.

Summary

We haven't generated a summary for this paper yet.