A note on Harris' ergodic theorem, controllability and perturbations of harmonic networks
Abstract: We show that elements of control theory, together with an application of Harris' ergodic theorem, provide an alternate method for showing exponential convergence to a unique stationary measure for certain classes of networks of quasi-harmonic classical oscillators coupled to heat baths. With the system of oscillators expressed in the form $\mathrm{d} X_t = A X_t \,\mathrm{d} t + F(X_t) \,\mathrm{d} t + B \,\mathrm{d} W_t$ in $\mathbf{R}d$, where $A$ encodes the harmonic part of the force and $-F$ corresponds to the gradient of the anharmonic part of the potential, the hypotheses under which we obtain exponential mixing are the following: $A$ is dissipative, the pair $(A,B)$ satisfies the Kalman condition, $F$ grows sufficiently slowly at infinity (depending on the dimension $d$), and the vector fields in the equation of motion satisfy the weak H\"ormander condition in at least one point of the phase space.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.