Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Randomized projection methods for convex feasibility problems: conditioning and convergence rates (1801.04873v1)

Published 15 Jan 2018 in math.OC

Abstract: Finding a point in the intersection of a collection of closed convex sets, that is the convex feasibility problem, represents the main modeling strategy for many computational problems. In this paper we analyze new stochastic reformulations of the convex feasibility problem in order to facilitate the development of new algorithmic schemes. We also analyze the conditioning problem parameters using certain (linear) regularity assumptions on the individual convex sets. Then, we introduce a general random projection algorithmic framework, which extends to the random settings many existing projection schemes, designed for the general convex feasibility problem. Our general random projection algorithm allows to project simultaneously on several sets, thus providing great flexibility in matching the implementation of the algorithm on the parallel architecture at hand. Based on the conditioning parameters, besides the asymptotic convergence results, we also derive explicit sublinear and linear convergence rates for this general algorithmic framework.

Summary

We haven't generated a summary for this paper yet.