Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Information Geometric Approach to Bayesian Lower Error Bounds (1801.04658v1)

Published 15 Jan 2018 in cs.IT and math.IT

Abstract: Information geometry describes a framework where probability densities can be viewed as differential geometry structures. This approach has shown that the geometry in the space of probability distributions that are parameterized by their covariance matrix is linked to the fundamentals concepts of estimation theory. In particular, prior work proposes a Riemannian metric - the distance between the parameterized probability distributions - that is equivalent to the Fisher Information Matrix, and helpful in obtaining the deterministic Cram\'{e}r-Rao lower bound (CRLB). Recent work in this framework has led to establishing links with several practical applications. However, classical CRLB is useful only for unbiased estimators and inaccurately predicts the mean square error in low signal-to-noise (SNR) scenarios. In this paper, we propose a general Riemannian metric that, at once, is used to obtain both Bayesian CRLB and deterministic CRLB along with their vector parameter extensions. We also extend our results to the Barankin bound, thereby enhancing their applicability to low SNR situations.

Citations (14)

Summary

We haven't generated a summary for this paper yet.