Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A unifying Perron-Frobenius theorem for nonnegative tensors via multi-homogeneous maps (1801.04215v2)

Published 12 Jan 2018 in math.SP, cs.DM, cs.NA, math.FA, math.NA, and math.OC

Abstract: We introduce the concept of shape partition of a tensor and formulate a general tensor eigenvalue problem that includes all previously studied eigenvalue problems as special cases. We formulate irreducibility and symmetry properties of a nonnegative tensor $T$ in terms of the associated shape partition. We recast the eigenvalue problem for $T$ as a fixed point problem on a suitable product of projective spaces. This allows us to use the theory of multi-homogeneous order-preserving maps to derive a new and unifying Perron-Frobenius theorem for nonnegative tensors which either implies earlier results of this kind or improves them, as weaker assumptions are required. We introduce a general power method for the computation of the dominant tensor eigenpair, and provide a detailed convergence analysis.

Citations (35)

Summary

We haven't generated a summary for this paper yet.