2000 character limit reached
2-cycles sur les hypersurfaces cubiques de dimension 5 (1801.03995v2)
Published 11 Jan 2018 in math.AG
Abstract: On \'etudie les cycles alg\'ebriques de codimension 3 sur les hypersurfaces cubiques lisses de dimension 5. Pour une telle hypersurface, on d\'emontre d'une part que son groupe de Griffiths des cycles de codimension 3 est trivial et d'autre part que l'application d'Abel-Jacobi induit un isomorphisme entre son groupe de Chow des cycles de codimension 3 alg\'ebriquement equivalents `a z\'ero et sa jacobienne interm\'ediaire. ---------- We study 2-cycles of a smooth cubic hypersurface of dimension 5. We show that the Griffiths group of 2-cycles is trivial and the Abel-Jacobi map induces an isomorphism between the Chow group of algebraically trivial 2-cycles and the intermediate Jacobian.