Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Maximum Matching with Recourse (1801.03462v3)

Published 10 Jan 2018 in cs.DS

Abstract: We study the online maximum matching problem in a model in which the edges are associated with a known recourse parameter $k$. An online algorithm for this problem has to maintain a valid matching while edges of the underlying graph are presented one after the other. At any moment the algorithm can decide to include an edge into the matching or to exclude it, under the restriction that at most $k$ such actions per edge take place, where $k$ is typically a small constant. This problem was introduced and studied in the context of general online packing problems with recourse by Avitabile et al. [Information Processing Letters, 2013], whereas the special case $k=2$ was studied by Boyar et al. [WADS 2017]. In the first part of this paper we consider the edge arrival model, in which an arriving edge never disappears from the graph. Here, we first show an improved analysis on the performance of the algorithm AMP of Avitabile et al., by exploiting the structure of the matching problem. In addition, we show that the greedy algorithm has competitive ratio $3/2$ for every even $k$ and ratio $2$ for every odd $k$. Moreover, we present and analyze an improvement of the greedy algorithm which we call $L$-Greedy, and we show that for small values of $k$ it outperforms the algorithm AMP. In terms of lower bounds, we show that no deterministic algorithm better than $1+1/(k-1)$ exists, improving upon the known lower bound of $1+1/k$. The second part of the paper is devoted to the edge arrival/departure model, which is the fully dynamic variant of online matching with recourse. The analysis of $L$-Greedy and AMP carry through in this model; moreover we show a lower bound of $(k2-3k+6) / (k2-4k+7)$ for all even $k \ge 4$. For $k\in{2,3}$, the competitive ratio is $3/2$.

Citations (12)

Summary

We haven't generated a summary for this paper yet.