Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quasi-shuffle algebras and renormalisation of rough differential equations (1801.02964v1)

Published 9 Jan 2018 in math.PR and math.CA

Abstract: The objective of this work is to compare several approaches to the process of renormalisation in the context of rough differential equations using the substitution bialgebra on rooted trees known from backward error analysis of $B$-series. For this purpose, we present a so-called arborification of the Hoffman--Ihara theory of quasi-shuffle algebra automorphisms. The latter are induced by formal power series, which can be seen to be special cases of the cointeraction of two Hopf algebra structures on rooted forests. In particular, the arborification of Hoffman's exponential map, which defines a Hopf algebra isomorphism between the shuffle and quasi-shuffle Hopf algebra, leads to a canonical renormalisation that coincides with Marcus' canonical extension for semimartingale driving signals. This is contrasted with the canonical geometric rough path of Hairer and Kelly by means of a recursive formula defined in terms of the coaction of the substitution bialgebra.

Summary

We haven't generated a summary for this paper yet.