Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A method for Bayesian regression modelling of composition data (1801.02954v1)

Published 9 Jan 2018 in stat.ME

Abstract: Many scientific and industrial processes produce data that is best analysed as vectors of relative values, often called compositions or proportions. The Dirichlet distribution is a natural distribution to use for composition or proportion data. It has the advantage of a low number of parameters, making it the parsimonious choice in many cases. In this paper we consider the case where the outcome of a process is Dirichlet, dependent on one or more explanatory variables in a regression setting. We explore some existing approaches to this problem, and then introduce a new simulation approach to fitting such models, based on the Bayesian framework. We illustrate the advantages of the new approach through simulated examples and an application in sport science. These advantages include: increased accuracy of fit, increased power for inference, and the ability to introduce random effects without additional complexity in the analysis.

Summary

We haven't generated a summary for this paper yet.