Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

k-connectivity of Random Graphs and Random Geometric Graphs in Node Fault Model (1801.02818v1)

Published 9 Jan 2018 in cs.IT, cs.SI, math.IT, and physics.soc-ph

Abstract: k-connectivity of random graphs is a fundamental property indicating reliability of multi-hop wireless sensor networks (WSN). WSNs comprising of sensor nodes with limited power resources are modeled by random graphs with unreliable nodes, which is known as the node fault model. In this paper, we investigate k-connectivity of random graphs in the node fault model by evaluating the network breakdown probability, i.e., the disconnectivity probability of random graphs after stochastic node removals. Using the notion of a strongly typical set, we obtain universal asymptotic upper and lower bounds of the network breakdown probability. The bounds are applicable both to random graphs and to random geometric graphs. We then consider three representative random graph ensembles: the Erdos-Renyi random graph as the simplest case, the random intersection graph for WSNs with random key predistribution schemes, and the random geometric graph as a model of WSNs generated by random sensor node deployment. The bounds unveil the existence of the phase transition of the network breakdown probability for those ensembles.

Citations (3)

Summary

We haven't generated a summary for this paper yet.