Improvements of some operator inequalities involving positive linear maps via the Kantorovich constant (1801.02030v1)
Abstract: We present some operator inequalities for positive linear maps that generalize and improve the derived results in some recent years. For instant, if $A$ and $B$ are positive operators and $m,m{'},M,M{'}$ are positive real numbers satisfying either one of the condition $ 0<m \leq B \leq m{'} <M{'} \leq A \leq M $ or $0<m \leq A \leq m{'} <M{'} \leq B \leq M$, then \begin{align*} \Phi {p} \big(A \nabla {v} B+2 r Mm (A{-1}\nabla B{-1}- &A{-1} \sharp B{-1} )\big)\ & \leq \left( \frac{K(h)}{ 4{\frac{2}{p}-1} K{r{1}} \left( \sqrt {h{'}}\right)} \right) {p} \Phi{p} (A \sharp_{\nu} B) \end{align*} and \begin{align*} \Phi {p} \big(A \nabla {v} B+2 r Mm (A{-1}\nabla B{-1}-& A{-1} \sharp B{-1} )\big) \ &\leq \left( \frac{K(h)}{ 4{\frac{2}{p}-1} K{r{1}}\left( \sqrt {h{'}}\right)}\right) {p} (\Phi(A) \sharp_{\nu} \Phi (B)){p}, \end{align*} where $\Phi$ is a positive unital linear map, $ 0 \leq \nu \leq 1$, $p \geq 2,$ $r=\min{\nu,1-\nu},$ $h=\frac{M}{m},$ $h{'}=\frac{M{'}}{m{'}}$, $K(h)=\frac{(1+h){2}}{4h}$ and $r_{1}=\min{2r,1-2r}.$ We also obtain a reverse of the Ando inequality for positive linear maps via the Kantorovich constant.