Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A rank 2 Dijkgraaf-Moore-Verlinde-Verlinde formula (1801.01878v3)

Published 8 Jan 2018 in math.AG, hep-th, and math.DG

Abstract: We conjecture a formula for the virtual elliptic genera of moduli spaces of rank 2 sheaves on minimal surfaces $S$ of general type. We express our conjecture in terms of the Igusa cusp form $\chi_{10}$ and Borcherds type lifts of three quasi-Jacobi forms which are all related to the Weierstrass elliptic function. We also conjecture that the generating function of virtual cobordism classes of these moduli spaces depends only on $\chi(\mathcal{O}_S)$ and $K_S2$ via two universal functions, one of which is determined by the cobordism classes of Hilbert schemes of points on $K3$. We present generalizations of these conjectures, e.g. to arbitrary surfaces with $p_g>0$ and $b_1=0$. We use a result of J. Shen to express the virtual cobordism class in terms of descendent Donaldson invariants. In a prequel we used T. Mochizuki's formula, universality, and toric calculations to compute such Donaldson invariants in the setting of virtual $\chi_y$-genera. Similar techniques allow us to verify our new conjectures in many cases.

Summary

We haven't generated a summary for this paper yet.