Papers
Topics
Authors
Recent
Search
2000 character limit reached

Out-of-time-ordered correlators in quantum Ising chain

Published 5 Jan 2018 in cond-mat.stat-mech | (1801.01636v2)

Abstract: Out-of-time-ordered correlators (OTOC) have been proposed to characterize quantum chaos in generic systems. However, they can also show interesting behavior in integrable models, resembling the OTOC in chaotic systems in some aspects. Here we study the OTOC for different operators in the exactly-solvable one-dimensional quantum Ising spin chain. The OTOC for spin operators that are local in terms of the Jordan-Wigner fermions has a "shell-like" structure: after the wavefront passes, the OTOC approaches its original value in the long-time limit, showing no signature of scrambling; the approach is described by a $t{-1}$ power law at long time $t$. On the other hand, the OTOC for spin operators that are nonlocal in the Jordan-Wigner fermions has a "ball-like" structure, with its value reaching zero in the long-time limit, looking like a signature of scrambling; the approach to zero, however, is described by a slow power law $t{-1/4}$ for the Ising model at the critical coupling. These long-time power-law behaviors in the lattice model are not captured by conformal field theory calculations. The mixed OTOC with both local and nonlocal operators in the Jordan-Wigner fermions also has a "ball-like" structure, but the limiting values and the decay behavior appear to be nonuniversal. In all cases, we are not able to define a parametrically large window around the wavefront to extract the Lyapunov exponent.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.