Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fingerprint Distortion Rectification using Deep Convolutional Neural Networks (1801.01198v1)

Published 3 Jan 2018 in cs.CV

Abstract: Elastic distortion of fingerprints has a negative effect on the performance of fingerprint recognition systems. This negative effect brings inconvenience to users in authentication applications. However, in the negative recognition scenario where users may intentionally distort their fingerprints, this can be a serious problem since distortion will prevent recognition system from identifying malicious users. Current methods aimed at addressing this problem still have limitations. They are often not accurate because they estimate distortion parameters based on the ridge frequency map and orientation map of input samples, which are not reliable due to distortion. Secondly, they are not efficient and requiring significant computation time to rectify samples. In this paper, we develop a rectification model based on a Deep Convolutional Neural Network (DCNN) to accurately estimate distortion parameters from the input image. Using a comprehensive database of synthetic distorted samples, the DCNN learns to accurately estimate distortion bases ten times faster than the dictionary search methods used in the previous approaches. Evaluating the proposed method on public databases of distorted samples shows that it can significantly improve the matching performance of distorted samples.

Citations (29)

Summary

We haven't generated a summary for this paper yet.