Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ornstein-Uhlenbeck processes with singular drifts: integral estimates and Girsanov densities (1801.00761v6)

Published 2 Jan 2018 in math.PR

Abstract: We consider a perturbation of a Hilbert space-valued Ornstein--Uhlenbeck process by a class of singular nonlinear non-autonomous maximal monotone time-dependent drifts. The only further assumption on the drift is that it is bounded on balls in the Hilbert space uniformly in time. First we introduce a new notion of generalized solutions for such equations which we call pseudo-weak solutions and prove that they always exist and obtain pathwise estimates in terms of the data of the equation. Then we prove that their laws are absolutely continuous with respect to the law of the original Ornstein--Uhlenbeck process. In particular, we show that pseudo-weak solutions always have continuous sample paths. In addition, we obtain integrability estimates of the associated Girsanov densities. Some of our results concern non-random equations as well, while probabilistic results are new even in finite-dimensional autonomous settings.

Summary

We haven't generated a summary for this paper yet.