Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quality assessment metrics for edge detection and edge-aware filtering: A tutorial review (1801.00454v1)

Published 1 Jan 2018 in cs.CV

Abstract: The quality assessment of edges in an image is an important topic as it helps to benchmark the performance of edge detectors, and edge-aware filters that are used in a wide range of image processing tasks. The most popular image quality metrics such as Mean squared error (MSE), Peak signal-to-noise ratio (PSNR) and Structural similarity (SSIM) metrics for assessing and justifying the quality of edges. However, they do not address the structural and functional accuracy of edges in images with a wide range of natural variabilities. In this review, we provide an overview of all the most relevant performance metrics that can be used to benchmark the quality performance of edges in images. We identify four major groups of metrics and also provide a critical insight into the evaluation protocol and governing equations.

Citations (21)

Summary

We haven't generated a summary for this paper yet.