Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Growing Attributed Networks through Local Processes (1712.10195v4)

Published 29 Dec 2017 in cs.SI

Abstract: This paper proposes an attributed network growth model. Despite the knowledge that individuals use limited resources to form connections to similar others, we lack an understanding of how local and resource-constrained mechanisms explain the emergence of rich structural properties found in real-world networks. We make three contributions. First, we propose a parsimonious and accurate model of attributed network growth that jointly explains the emergence of in-degree distributions, local clustering, clustering-degree relationship and attribute mixing patterns. Second, our model is based on biased random walks and uses local processes to form edges without recourse to global network information. Third, we account for multiple sociological phenomena: bounded rationality, structural constraints, triadic closure, attribute homophily, and preferential attachment. Our experiments indicate that the proposed Attributed Random Walk (ARW) model accurately preserves network structure and attribute mixing patterns of six real-world networks; it improves upon the performance of eight state-of-the-art models by a statistically significant margin of 2.5-10x.

Citations (4)

Summary

We haven't generated a summary for this paper yet.