Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicting Rich Drug-Drug Interactions via Biomedical Knowledge Graphs and Text Jointly Embedding (1712.08875v4)

Published 24 Dec 2017 in cs.AI

Abstract: Minimizing adverse reactions caused by drug-drug interactions has always been a momentous research topic in clinical pharmacology. Detecting all possible interactions through clinical studies before a drug is released to the market is a demanding task. The power of big data is opening up new approaches to discover various drug-drug interactions. However, these discoveries contain a huge amount of noise and provide knowledge bases far from complete and trustworthy ones to be utilized. Most existing studies focus on predicting binary drug-drug interactions between drug pairs but ignore other interactions. In this paper, we propose a novel framework, called PRD, to predict drug-drug interactions. The framework uses the graph embedding that can overcome data incompleteness and sparsity issues to achieve multiple DDI label prediction. First, a large-scale drug knowledge graph is generated from different sources. Then, the knowledge graph is embedded with comprehensive biomedical text into a common low dimensional space. Finally, the learned embeddings are used to efficiently compute rich DDI information through a link prediction process. To validate the effectiveness of the proposed framework, extensive experiments were conducted on real-world datasets. The results demonstrate that our model outperforms several state-of-the-art baseline methods in terms of capability and accuracy.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Meng Wang (1063 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.