Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence complexity analysis of Albert and Chib's algorithm for Bayesian probit regression (1712.08867v2)

Published 24 Dec 2017 in math.ST and stat.TH

Abstract: The use of MCMC algorithms in high dimensional Bayesian problems has become routine. This has spurred so-called convergence complexity analysis, the goal of which is to ascertain how the convergence rate of a Monte Carlo Markov chain scales with sample size, $n$, and/or number of covariates, $p$. This article provides a thorough convergence complexity analysis of Albert and Chib's (1993) data augmentation algorithm for the Bayesian probit regression model. The main tools used in this analysis are drift and minorization conditions. The usual pitfalls associated with this type of analysis are avoided by utilizing centered drift functions, which are minimized in high posterior probability regions, and by using a new technique to suppress high-dimensionality in the construction of minorization conditions. The main result is that the geometric convergence rate of the underlying Markov chain is bounded below 1 both as $n \rightarrow \infty$ (with $p$ fixed), and as $p \rightarrow \infty$ (with $n$ fixed). Furthermore, the first computable bounds on the total variation distance to stationarity are byproducts of the asymptotic analysis.

Summary

We haven't generated a summary for this paper yet.