Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quasi-maximum likelihood estimation for cointegrated continuous-time state space models observed at low frequencies (1712.08665v2)

Published 22 Dec 2017 in math.ST and stat.TH

Abstract: In this paper, we investigate quasi-maximum likelihood (QML) estimation for the parameters of a cointegrated solution of a continuous-time linear state space model observed at discrete time points. The class of cointegrated solutions of continuous-time linear state space models is equivalent to the class of cointegrated continuous-time ARMA (MCARMA) processes. As a start, some pseudo-innovations are constructed to be able to define a QML-function. Moreover, the parameter vector is divided appropriately in long-run and short-run parameters using a representation for cointegrated solutions of continuous-time linear state space models as a sum of a L\'evy process plus a stationary solution of a linear state space model. Then, we establish the consistency of our estimator in three steps. First, we show the consistency for the QML estimator of the long-run parameters. In the next step, we calculate its consistency rate. Finally, we use these results to prove the consistency for the QML estimator of the short-run parameters. After all, we derive the limiting distributions of the estimators. The long-run parameters are asymptotically mixed normally distributed, whereas the short-run parameters are asymptotically normally distributed. The performance of the QML estimator is demonstrated by a simulation study.

Citations (3)

Summary

We haven't generated a summary for this paper yet.