Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient European and American option pricing under a jump-diffusion process (1712.08137v1)

Published 21 Dec 2017 in q-fin.CP

Abstract: When the underlying asset displays oscillations, spikes or heavy-tailed distributions, the lognormal diffusion process (for which Black and Scholes developed their momentous option pricing formula) is inadequate: in order to overcome these real world difficulties many models have been developed. Merton proposed a jump-diffusion model, where the dynamics of the price of the underlying are subject to variations due to a Brownian process and also to possible jumps, driven by a compound Poisson process. Merton's model admits a series solution for the European option price, and there have been a lot of attempts to obtain a discretisation of the Merton model with tree methods in order to price American or more complex options, e. g. Amin, the $O(n3)$ procedure by Hilliard and Schwartz and the $O(n{2.5})$ procedure by Dai et al. Here, starting from the implementation of the seven-nodes procedure by Hilliard and Schwartz, we prove theoretically that it is possible to reduce the complexity to $O(n \ln n)$ in the European case and $O(n2 \ln n)$ in the American put case. These theoretical results can be obtained through suitable truncation of the lattice structure and the proofs provide closed formulas for the truncation limitations.

Summary

We haven't generated a summary for this paper yet.