Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interpolation Macdonald polynomials and Cauchy-type identities (1712.08018v2)

Published 21 Dec 2017 in math.CO, math-ph, math.MP, and math.QA

Abstract: Let Sym denote the algebra of symmetric functions and $P_\mu(\,\cdot\,;q,t)$ and $Q_\mu(\,\cdot\,;q,t)$ be the Macdonald symmetric functions (recall that they differ by scalar factors only). The $(q,t)$-Cauchy identity $$ \sum_\mu P_\mu(x_1,x_2,\dots;q,t)Q_\mu(y_1,y_2,\dots;q,t)=\prod_{i,j=1}\infty\frac{(x_iy_jt;q)\infty}{(x_iy_j;q)\infty} $$ expresses the fact that the $P_\mu(\,\cdot\,;q,t)$'s form an orthogonal basis in Sym with respect to a special scalar product $\langle\,\cdot\,,\,\cdot\,\rangle_{q,t}$. The present paper deals with the inhomogeneous \emph{interpolation} Macdonald symmetric functions $$ I_\mu(x_1,x_2,\dots;q,t)=P_\mu(x_1,x_2,\dots;q,t)+\text{lower degree terms}. $$ These functions come from the $N$-variate interpolation Macdonald polynomials, extensively studied in the 90's by Knop, Okounkov, and Sahi. The goal of the paper is to construct symmetric functions $J_\mu(\,\cdot\,;q,t)$ with the biorthogonality property $$ \langle I_\mu(\,\cdot\,;q,t), J_\nu(\,\cdot\,;q,t)\rangle_{q,t}=\delta_{\mu\nu}. $$ These new functions live in a natural completion of the algebra Sym. As a corollary one obtains a new Cauchy-type identity in which the interpolation Macdonald polynomials are paired with certain multivariate rational symmetric functions. The degeneration of this identity in the Jack limit is also described.

Summary

We haven't generated a summary for this paper yet.