Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Equilibria for Time-Inconsistent Stopping Problems in Continuous Time (1712.07806v2)

Published 21 Dec 2017 in math.OC, q-fin.EC, and q-fin.MF

Abstract: For an infinite-horizon continuous-time optimal stopping problem under non-exponential discounting, we look for an optimal equilibrium, which generates larger values than any other equilibrium does on the entire state space. When the discount function is log sub-additive and the state process is one-dimensional, an optimal equilibrium is constructed in a specific form, under appropriate regularity and integrability conditions. While there may exist other optimal equilibria, we show that they can differ from the constructed one in very limited ways. This leads to a sufficient condition for the uniqueness of optimal equilibria, up to some closedness condition. To illustrate our theoretic results, comprehensive analysis is carried out for three specific stopping problems, concerning asset liquidation and real options valuation. For each one of them, an optimal equilibrium is characterized through an explicit formula.

Summary

We haven't generated a summary for this paper yet.