2000 character limit reached
On the finiteness of the Gorenstein dimension for Artin algebras (1712.07463v1)
Published 20 Dec 2017 in math.RT
Abstract: In \cite{SSZ}, the authors proved that an Artin algebra $A$ with infinite global dimension has an indecomposable module with infinite projective and infinite injective dimension, giving a new characterisation of algebras with finite global dimension. We prove in this article that an Artin algebra $A$ that is not Gorenstein has an indecomposable $A$-module with infinite Gorenstein projective dimension and infinite Gorenstein injective dimension, which gives a new characterisation of algebras with finite Gorenstein dimension. We show that this gives a proper generalisation of the result in \cite{SSZ} for Artin algebras.