Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Quantum Algorithm for Solving Multivariate Quadratic Equations (1712.07211v1)

Published 19 Dec 2017 in cs.CR and quant-ph

Abstract: In August 2015 the cryptographic world was shaken by a sudden and surprising announcement by the US National Security Agency NSA concerning plans to transition to post-quantum algorithms. Since this announcement post-quantum cryptography has become a topic of primary interest for several standardization bodies. The transition from the currently deployed public-key algorithms to post-quantum algorithms has been found to be challenging in many aspects. In particular the problem of evaluating the quantum-bit security of such post-quantum cryptosystems remains vastly open. Of course this question is of primarily concern in the process of standardizing the post-quantum cryptosystems. In this paper we consider the quantum security of the problem of solving a system of {\it $m$ Boolean multivariate quadratic equations in $n$ variables} (\MQb); a central problem in post-quantum cryptography. When $n=m$, under a natural algebraic assumption, we present a Las-Vegas quantum algorithm solving \MQb{} that requires the evaluation of, on average, $O(2{0.462n})$ quantum gates. To our knowledge this is the fastest algorithm for solving \MQb{}.

Citations (35)

Summary

We haven't generated a summary for this paper yet.