Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The heat asymptotics on filtered manifolds (1712.07104v2)

Published 19 Dec 2017 in math.DG and math.AP

Abstract: The short-time heat kernel expansion of elliptic operators provides a link between local and global features of classical geometries. For many geometric structures related to (non-)involutive distributions, the natural differential operators tend to be Rockland, hence hypoelliptic. In this paper we establish a universal heat kernel expansion for formally selfadjoint non-negative Rockland differential operators on general closed filtered manifolds. The main ingredient is the analysis of parametrices in a recently constructed calculus adapted to these geometric structures. The heat expansion implies that the new calculus, a more general version of the Heisenberg calculus, also has a non-commutative residue. Many of the well known implications of the heat expansion such as, the structure of the complex powers, the heat trace asymptotics, the continuation of the zeta function, as well as Weyl's law for the eigenvalue asymptotics, can be adapted to this calculus. Other consequences include a McKean-Singer type formula for the index of Rockland differential operators. We illustrate some of these results by providing a more explicit description of Weyl's law for Rumin-Seshadri operators associated with curved BGG sequences over 5-manifolds equipped with a rank two distribution of Cartan type.

Summary

We haven't generated a summary for this paper yet.