Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
52 tokens/sec
GPT-5 Medium
20 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
100 tokens/sec
DeepSeek R1 via Azure Premium
98 tokens/sec
GPT OSS 120B via Groq Premium
459 tokens/sec
Kimi K2 via Groq Premium
197 tokens/sec
2000 character limit reached

Joint model-based recognition and localization of overlapped acoustic events using a set of distributed small microphone arrays (1712.07065v1)

Published 19 Dec 2017 in cs.SD and eess.AS

Abstract: In the analysis of acoustic scenes, often the occurring sounds have to be detected in time, recognized, and localized in space. Usually, each of these tasks is done separately. In this paper, a model-based approach to jointly carry them out for the case of multiple simultaneous sources is presented and tested. The recognized event classes and their respective room positions are obtained with a single system that maximizes the combination of a large set of scores, each one resulting from a different acoustic event model and a different beamformer output signal, which comes from one of several arbitrarily-located small microphone arrays. By using a two-step method, the experimental work for a specific scenario consisting of meeting-room acoustic events, either isolated or overlapped with speech, is reported. Tests carried out with two datasets show the advantage of the proposed approach with respect to some usual techniques, and that the inclusion of estimated priors brings a further performance improvement.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube