Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Holomorphic Hermite functions in Segal-Bargmann spaces (1712.06789v3)

Published 19 Dec 2017 in math.FA and math.CV

Abstract: We study systems of holomorphic Hermite functions in the Segal-Bargmann spaces, which are Hilbert spaces of entire functions on the complex Euclidean space, and are determined by the Bargmann-type integral transform on the real Euclidean space. We prove that for any positive parameter which is strictly smaller than the minimum eigenvalue of the positive Hermitian matrix associated with the transform, one can find a generator of holomorphic Hermite functions whose anihilation and creation operators satisfy canonical commutation relations. In other words, we find the necessary and sufficient conditions so that some kinds of entire functions can be such generators. Moreover, we also study the complete orthogonality, the eigenvalue problems and the Rodrigues formulas.

Summary

We haven't generated a summary for this paper yet.