Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable hierarchical PDE sampler for generating spatially correlated random fields using non-matching meshes (1712.06758v1)

Published 19 Dec 2017 in math.NA

Abstract: This work describes a domain embedding technique between two non-matching meshes used for generating realizations of spatially correlated random fields with applications to large-scale sampling-based uncertainty quantification. The goal is to apply the multilevel Monte Carlo (MLMC) method for the quantification of output uncertainties of PDEs with random input coefficients on general, unstructured computational domains. We propose a highly scalable, hierarchical sampling method to generate realizations of a Gaussian random field on a given unstructured mesh by solving a reaction-diffusion PDE with a stochastic right-hand side. The stochastic PDE is discretized using the mixed finite element method on an embedded domain with a structured mesh, and then the solution is projected onto the unstructured mesh. This work describes implementation details on how to efficiently transfer data from the structured and unstructured meshes at coarse levels, assuming this can be done efficiently on the finest level. We investigate the efficiency and parallel scalability of the technique for the scalable generation of Gaussian random fields in three dimensions. An application of the MLMC method is presented for quantifying uncertainties of subsurface flow problems. We demonstrate the scalability of the sampling method with non-matching mesh embedding, coupled with a parallel forward model problem solver, for large-scale 3D MLMC simulations with up to $1.9\cdot 109$ unknowns.

Summary

We haven't generated a summary for this paper yet.