Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Algorithms for low-distortion embeddings into arbitrary 1-dimensional spaces (1712.06747v1)

Published 19 Dec 2017 in cs.CG

Abstract: We study the problem of finding a minimum-distortion embedding of the shortest path metric of an unweighted graph into a "simpler" metric $X$. Computing such an embedding (exactly or approximately) is a non-trivial task even when $X$ is the metric induced by a path, or, equivalently, into the real line. In this paper we give approximation and fixed-parameter tractable (FPT) algorithms for minimum-distortion embeddings into the metric of a subdivision of some fixed graph $H$, or, equivalently, into any fixed 1-dimensional simplicial complex. More precisely, we study the following problem: For given graphs $G$, $H$ and integer $c$, is it possible to embed $G$ with distortion $c$ into a graph homeomorphic to $H$? Then embedding into the line is the special case $H=K_2$, and embedding into the cycle is the case $H=K_3$, where $K_k$ denotes the complete graph on $k$ vertices. For this problem we give -an approximation algorithm, which in time $f(H)\cdot \text{poly} (n)$, for some function $f$, either correctly decides that there is no embedding of $G$ with distortion $c$ into any graph homeomorphic to $H$, or finds an embedding with distortion $\text{poly}(c)$; -an exact algorithm, which in time $f'(H, c)\cdot \text{poly} (n)$, for some function $f'$, either correctly decides that there is no embedding of $G$ with distortion $c$ into any graph homeomorphic to $H$, or finds an embedding with distortion $c$. Prior to our work, $\text{poly}(\mathsf{OPT})$-approximation or FPT algorithms were known only for embedding into paths and trees of bounded degrees.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Timothy Carpenter (3 papers)
  2. Fedor V. Fomin (137 papers)
  3. Daniel Lokshtanov (135 papers)
  4. Saket Saurabh (171 papers)
  5. Anastasios Sidiropoulos (45 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.