Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A two-phase two-fluxes degenerate Cahn-Hilliard model as constrained Wasserstein gradient flow (1712.06446v2)

Published 18 Dec 2017 in math.AP, math-ph, and math.MP

Abstract: We study a non-local version of the Cahn-Hilliard dynamics for phase separation in a two-component incompressible and immiscible mixture with linear mobilities. In difference to the celebrated local model with nonlinear mobility, it is only assumed that the divergences of the two fluxes --- but not necessarily the fluxes themselves --- annihilate each other. Our main result is a rigorous proof of existence of weak solutions. The starting point is the formal representation of the dynamics as a constrained gradient flow in the Wasserstein metric. We then show that time-discrete approximations by means of the incremental minimizing movement scheme converge to a weak solution in the limit. Further, we compare the non-local model to the classical Cahn-Hilliard model in numerical experiments. Our results illustrate the significant speed-up in the decay of the free energy due to the higher degree of freedom for the velocity fields.

Summary

We haven't generated a summary for this paper yet.